
AD-Ri54 825 SOFTMARE DESIGN PROTOTYPING USING ADA(U) NAVAL SURFACE i/..
WEAPONS CENTER DAHLGREN VA M W MASTERS ET AL. SEP 83

UNCLASSIFIED NSNC/TR-82-4i7 F/G 9/2 NLttttCttAtttttIE tttt
IIIIIIIIIIIIIIII F/G 5/2 l

mEElllhhElllhllhhhIll
mhmhhmhhhhhhhulllllll



1 . t 4. 1L . L .

p...

----- >

11111 1.01112.0 ~ .

S .
..... 136 IEI

"III- 111

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

.... 
-.". . . . . . . . . . . . . . .. . . . . * ,.

.. . . . . .. *.'.. .



_".,_ __ ,f 411 'i AlU~l. W Al (I( VI INMI Ni I I X1 NS .

Ln NSWC TR 82-417

* 00

Lfl

SOFTWARE DESIGN PROTOTYPING
: USING ADA

BY MICHAEL W. MASTERS

MICHAEL J. KUCHINSKI

COMBAT SYSTEMS DEPARTMENT

SEPTEMBER 1983

Approved for public release; distribution unlimited. DTIC
ELE:CTE

JUN 6-'"

NAVAL SURFACE WEAPONS CENTER
C-:) Dahigren, Virginia 22,148 0Silver Spring, Maryland 20910

F5 05 10 063

[.2. -' -" '""" ': "~~~~~.. ... .".. . ".'..... ". "-... ". "".-". . ". ""............. ......:...-,- ..i:



-.7 7 7,.. 7

UNCLASSIFIED 6
SECUP~ITY CLASSIFICATION OF THIS PAGE (When Date Entered)__________________

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER 2.GV CESSION NO. 3. REC~ET ATLOG NUMBER.

NSWC TR 82-417fil _ ____________

4. TITLE (and Subtitle) 5. TYPE OF REPORT &PERIOD COVERED

Final
* SOFTWARE DESIGN PROTOTYPING USING ADA6PEORIGR.RPRTNME

7. AUTHOR(s) I. CONTRACT OR GRANT NUMBER(@)

Michael W. Masters
Michael J. Kuchinski

g. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Surface Weapons Center (N21)
* Dahlgren, VA 22448 SON- funded

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
*Naval Sea Systems Command September 1983

Washington, DC 20362 13. NUMBER OF PAGES

____ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 52

14. MONITORING AGENCY NAME & ADDRESS(iI difIferent from Controlingo Office) 15. SECURITY CLASS. (of thie report)

UNCLASSIFIED
15a. DECL ASSI FICATION/ DOWN GRADING

SCHEDULE

1I. DISTRIBUTION STATEMENT (of this Report)
!Accession For

Approved for public release; distribution unlimited. WTI GS&
DTIC TABQ
Unannounced 0
Justif ioation

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different troem Rep 0)

Distribution/ G
Availability Codes

*IS. SUPPLEMENTARY NOTES Avl nI
Di5s Special .-

19. KEY WORDS (Continue an reverse aide if neceeeary and identity by block mnber)

Ada Software Design ORO
High-Level Programming Language Software Development
Program Design Language (PDL) Design Prototyping t

t.

Computer Program

20. ABSTRACT (Continue on reverse side If necesaryi and identify by block number)

_.-The investigation of the methodology for software design prototyping using
Ada as a program design language (PDL) involves taking a system engineering
approach to software development. A proposal is made to express design charac-
teristics as Ada programs in an effort to provide executability of the design
from its earliest specification. This approach is subsequently given more sub-
,tarce by an examination of the methodology from three distinct perspectives: -- ) .

over)

D I 1. 1471 EDITION OF I NOV CS IS OBSOLETE UNCLASSIFIED
S/N 01 02-LF-01 4.6601 SECURITY CLASSIFICATION Of THIS PAGE (Whien Data Entered)

. . .. . . . . .



UNCLASSIFIED S
SECURITY CLASSIFICATION OF THIS PAGE ( o,.n Dat En.r...

20. ABSTRACT (Continued)

- 14 The qualities of an -ideal PDL are put forth and Ada is compared
with this idealized PDL; Ada compares favorably with this model in most, S
if not all, areas. .

2 The qualities of an ideal software prototype are specified, and the

Ada prototype program is measured against this idealized prototype. Ada
exhibits a number of characteristics that lend themselves well to the '

gradual refinement of a prototype program; it also shows itself to be •
highly supportive of testing and validation of the design as that design
matureL It is found that a prototype developed in Ada, using this meth-
odology, offers distinct advantages over the traditional software
development. ")

34 A step-by-step guide to the use of Ada as a PDL in a design proto- O
typing environment is given.

, ' I r / , "'"-'*'

... .-1"2--- 2._,,

.--.'2..-

:.'.. '

UNCLASSIFIED %

SECURITY CLASSIFICATION OFTNMIS PAGE(Whion Does Entered)

. ..... o

.. ........................... . . * * . . ,.



NSWC TR 82-417

FOREWORD 0

In September 1981, a proposal was made to the NSWC IED panel to investigate a
methodology for software design prototyping in the context of Navy tactical embedded
computers and real-time software. The methodology is based on utilization of the
Ada programming language as a program design language. Funding was granted for one
man-year of effort spanning 1 October 1981 through 30 September 1982. 6

This report was reviewed by Robert J. Crowder, Head, Systems Evaluation and
Control Branch; Daniel Green, Staff Scientist; and R. N. Cain, Head, AEGIS Ship
Combat Systems Division.

Released by:

THOMA A. CLARE, Head
Combat Systems Department .

i- ,.. ..4].-.-.



NSWC TR 82-417 6

PREFACE

The authors would like to provide the reader with some background information
regarding the subject of this report. They attempt to develop and describe a meth-
odology for software design and development. In order to give substance to the
ideas treated herein, the study was performed within the context of a trial concep-
tual software design effort. An early version of an Ada compiler was used in the
construction of the design. The test bed chosen for the study was the AEGIS Combat
System Interface Simulator (ACSIS) for the AEGIS Ship Combat System. Briefly, AEGIS
is a computer-controlled, integrated ship weapon system, designed to detect, track,
and engage incoming missiles. ACSIS is slated to be the simulator program by which
the AEGIS computer programs are maintained throughout their lifespan. The choice of
ACSIS was made due to the fact that it is destined to be a real-time program, and
such an environment is well suited to the methodology.

The Ada compiler used in this study was developed by Telesoft. The computer
used was an Intellimac IN 7000D microcomputer. The Ada compiler was, unfortunately,
incomplete. Consequently, some of the techniques described in this report are
inevitably implemented differently than they would have been had a full compiler
been available. In some cases techniques are proposed and described that could not
be compiled and tested. Such examples are at present unverified. However, every
attempt has been made to ensure their accuracy.

Many of the Ada code segments given as examples in this report are excerpts
taken from the test bed program. However, they represent only a small part of the
program produced from the trial design effort.

v0........... ...... ,.,.

...............



NSWC TR 82-417

CONTENTS

Page

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BACKGROUND . . . ... .1

DESIGN PROTOTYPNGHEETHODOLOGY 3

PROGRAM DESIGN LANGUAGES ..... *.****.*.* ******* * 7 C -

IDEALIZED PDL o . . . . . . . . . . . . 7
ANALYSIS OF ADA AS A PDL ......................... 8
SUMM14ARY . . . o . . .. . . . 19

PROTOTYPE COMPUTER PROGRAMS o 19
IDEALIZED PROTOTYPE . . . o o 19 n..
DESIGN PROTOTYPING VS CONVENTIONAL SOFTWARE DEVELOPMENT .. ...... 20

APPLICATION OF DESIGN PROTOTYPING METHODOLOGY ............... 31
APPLICATION ENVIRONMENT ....................... . 31
PHASEONEO FPHYS EIN ....................... 31
PHASETWOOFPHYSICALDESIGN..... , ..... . 37
PHASES THREEAND FOUR OFPHYSICALDESIGN. . . .............. 37

C ONCLUS IONS . . . * * . * * * * * * * * * * * * * * * * * * * * * * * * * * 40-
STATE OF THE ART 4 P0. ......... .. 4

SUMM4ARY o.. . . . . . ... . .. . . ... 40

POSTSCRIPT . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 40

REFERENCES . . . . . . .* . . . . . . . . . . . . . . . . . . . . . . . . . 43

DISTRIBUTIOTPING V . . . . . . .C T . .SOFTWARE.DEVELOPMENT . 20 "(•

vii

.................................................................



NSWC TR 82-417 "

ILLUSTRATIONS

Figure Page

1 TRADITIONAL SOFTWARE DEVELOPMENT PROCESS . . . . . . . . . . . . . . 1

2 SYSTEM ENGINEERING PROCESS .. .. ........... . . .... 2
3 PROTOTYPEDEVELOPMENTCYCLE ...................-. 4
4 SAMPLE DATA PACKAGE FOR TRACK-RELATED MODULES . . . . . . . o 9
5 ADA PACKAGE DECLARATION (VISIBLE PORTION) WITH PRIVATE TYPES . . . . 11
6 ADA PACKAGE BODY (INVISIBLE PORTION) . . . . . . . . . . . . . . . . 12
7 STUBBED-OUT ADA SUBPROGRAMS . .. .. .. . .. .. ... . . .. 12

8 TYPICAL ADA TASK ....... . .. . . . . . . . . . . 13

9 STEP-WISE REFINEMENT OF ADA SUBPROGRAM .. . . . . . . . . . . . . 15 -

10 ADA STRUCTURES THAT SUPPORT SEQUENCING LOGIC .. .. ... . . . . . 17
11 CPU TIME CONSUMP TIONEXMPEAML... ....... 22
12 ADA SEPARATEA EATRE. .. . . ..-. 24.

13 ADATASKSYNCHRONIZATIONMECHANISM . . . . . . . o. 25

14 INTER-TASK MAILBOX COMMUNICATION STRUCTURE . . . . . . . .. 28
15 ADA SHAREDRESOURCE EXAMPLE .................... 29

16 TYPICALTASK DEVELOPMENT . ................ .... 32
17 SYSTEM MODULE ARCHITECTUREDIAGRAM. . . . . . . . . . . . . . . 33
18 SYSTEM MODULE ARCHITECTURE IN CODEFORM. . . . . . 34

19 VISIBILITY HIERARCHY FROM THE COMPILER'S VIEWPOINT . . 1 35

20 STUBBED-OUT MESSAGE STRUCTURE, ... * .............. 36
21 TYPICAL SUBPROGRAM PACKAGE AT END OF PHASE ONE . . . . . . . . . . . 36
22 TYPICAL SUBPROGRAM PACKAGE DURING PHASE TWO . . . . . . . . . . . 38

TABLES

Table Page

1 PHYSICAL DESIGN VS FUNCTIONAL REQUIREMENTS MATRIX . . . . . . . . . 21
16 TYPICAL............................................ . . . 32- ': '[[
17 SYSTEM MODULE....... .............................. . . . . . 3 ....

2 8 CSSMIO MOFLE , RCHTETUR AN CODE FOR . . . .. . .. . .. . .. . 34

19 VSIBIITYHIERRCHFRO THECOMiLE'IWOIT. . . ..i5" -



NSWC TR 82-417

9

INTRODUCTION

BACKGROUND

The software development process is frequently characterized as including
several basic stages:1  requirements definition, specification, design, code and
debug, and test and integration (Figure 1). There are difficulties inherent in this
traditional approach, however. The most significant problem involves errors in the -

requirements and/or the design. These errors may not be discovered until the code
and debug phase or test and integration phase. When errors go undetected for so . -

long into the development process, costly corrections ensue.

REQUIREMENTS,. ..

SPECIFICATIONS ... -

DESIGN 21-i

CDE AND DEBUG -,-.[:.

TEST AND".

..

INTEGRATE

FIGURE 1.* TRADITIONAL SOFTWARE DEVELOPMENT PROCESS

.................................
. . . . . ."" -



- ~ ~ . ... . . . . . ... . . . .--. v.' -Jg v. . .. .. ... .

NSWC TR 82-417

An approach commonly used in hardware development, the system engineering
process (Figure 2), identifies five developmental stages:2  requirements, function
analysis, synthesis, evaluation and decision, and system specification. The func-
tional analysis stage involves the study of the system's logical functional break- .
down for the purpose of physically allocating those functions. Synthesis essential-
ly entails a trial system design and the development of a working model or proto-
type. Evaluation has to do with the verification of the design via prototype, with
the provision for feedback to the design and requirements phases. System specifica-
tion precedes full production implementation. The system specification for the
anticipated production of a great number of hardware units is somewhat different •
from the situation of software system specification. Nevertheless, the authors
contend that this very same approach, so common in the development of hardware, can
also be used in software development.

REQUIRE- FUNCTION EVALUA- SPECIFI-" -i-
MENTS ANALYSIS SNHIS TION CATIONS "

FIGURE 2. SYSTEM ENGINEERING PROCESS

S
The notion of computer program prototyping is one that has not attained pop-

ularity in the field of computer science. Nevertheless, it can provide the same
type of benefits as hardware prototyping. Loosely speaking, a prototype is a com-
puter program that is largely diagnostic and provides a means by which errors of
design can be detected, or the absence thereof can be verified.3  In this way, a
computer program's design can be examined and tested to see if it accurately re-
flects the specified requirements.

In the current life-cycle models, the validation of the design depends upon the
implementation of that design into a production computer program. This production
program constitutes the first time that the design is scrutinized from the stand-
point of executability. Cost and schedule overruns and inadequate performance may 0
indicate a faulty design and, as such, they may lead to a substantial amount of
"backtracking" in the design process. A possible need for backtracking suggests
that the ability to validate the executability of the design and the ability to
determine user satisfaction early in the design process can be highly desirable. To
this end, prototype development has recently begun to appear as a distinct phase in
some software life-cycle models.

1,4

A technique for specifying the program's design must be determined. A number
of specification tools are available to expedite the computer program design pro-
cess; the most common of these is the flowchart. A more recently developed tool
would be any of the various program design languages (PDLs). An automated means of
translation from PDL to code has also been considered desirable;5 although, the idea
of prototyping in this context seems to have gone largely unnoticed.

2 .'S'''2



NSWC TR 82-417 0

In response, the authors have undertaken to use a high-level programming lan-
age (Ada, the new Department of Defense computer program language) in much the
me way that one would use a PDL. The significant advantage to this approach is
at by adhering to a prescribed set of conventions, the program's design can be
bjected to verification from its earliest stages and, indeed, throughout its
velopment. Thus, upon conclusion of the design specification phase, a validated
d verified prototype program already exists; the two are largely one and the same.

The above-mentioned approach gives rise to a "software-first" methodology, in ..

ich a computer program is developed incrementally. Each increment corresponds to
phase in the design development and is the means by which the design is specified.
th this approach, each of the intermediate increments is considered to be a proto-
'pe of increasing complexity.

This methodology is one that could ostensibly be used with any high-level com-
iter language. Nevertheless, the authors feel that best results can be achieved
Lrough the use of a block-structured, English-like programming language such as
iscal or Ada. Given the broad range of semantic capabilities in Ada and the atten-
.on that has been devoted to readability and clarity, the authors have chosen to
"opose the methodology for use in conjunction with Ada. The development of the
iderlying ideas has been sparked by the requirements for software design and de-
tlopment in a real-time, military embedded computer system environment. However,
ie methodology is not limited to military applications and could be used in a wide
iriety of programming application environments. The application of the methodology
non-real-time applications has not been seriously considered at this time.

.SIGN PROTOTYPING METHODOLOGY

The methodology described herein and the philosophy behind it can be briefly
immarized in the following manner. First and foremost, the design is developed in
top-down fashion. High-level aspects of the design, including preliminary re-
3urce consumption information, are put forth in the form of a computer program
%lbeit a rudimentary one) and subsequent levels of detail are added incrementally.
k description of the techniques used to handle unspecified components of the design
ill be dealt with later in this report.) Each time a major milestone is reached in.. -

ie design development, the program is compiled and run in order to ensure execut-
oility of the design. No new design components are added until successful compila-
Lon and execution are achieved. (The reader is cautioned against confusing this
Rthodology with the old "code-now, design-later" philosophy.4 The authors' method-
Logy is a structured and orderly process and is completely compatible with the
stem engineering process.) With this methodology, the high-level language becomes
ie medium by which the design is expressed, while the executability factor provides
i additional advantage beyond standard design techniques.

Another significant aspect of the design philosophy concerns the authors' pre-
imptions about the functional requirements and physical design. The "logical" part
the design involves the breakdown of that design into functional areas; that is,

%e systematic grouping of different design components according to the functions
,iat they perform. Such a breakdown generally falls into the category of require-
Ents definition. The authors presume the existence of a set of well-defined re-
irements and functional relationships as a necessary precursor to the implementa- ,9

Lon of the methodology. In addition, an operating system with support routines, a

3
9 [[

* .. . . . . . . .. *e



* . .. .... . - - p s. . * .- -

NSWC TR 82-417

iardware suite, and requirements-oriented scenarios (i.e., suitable test data) are
ieeded as a backdrop to the methodology. Physical design constitutes the implemen-
tation of the functional areas into physical components. The methodology described
ierein effectively provides for the development of the physical design.

The key element of the prototype process described in this report is incremen-
tal design and development, a concept which has in the past been applied successful- " " -

ly to large-scale system developments. 6  In this approach, the development of the
physical design is broken down into four distinct stages (Figure 3). First, the
inter-task communication structure and the system-level architecture are specified. •
In Ada, of course, the interface to the run-time support environment is defined as a
part of the language. System-level architecture involves the design of archetypical %
processing units or modules and identification of their interrelationships. . -

REQUIREMENTS
SPECIFICATION

SYSTEM LEVEL
ARCHITECTURE;

INTERTASK

COMMUNICATION

SUBPROGRAM
INTERFACE

DEFINITION; DATA
Feedback STRUCTURE

INTERFACE

CRITICAL FUNCTIONS
IMPLEMENTED;

Feedback A USER INTERFACESTRESSED J-i i

FULL CAPACITY;
I ALL FUNCTIONS

Feedback IMPLEMENTED

FIGURE 3. PROTOTYPE DEVELOPMENT CYCLE

4

2 ,.-. .



NSWC TR 82-417

At this stage of development, major processing requirements are allocated to
s; entries and associated processing segments are defined; and global data
ctures and intertask data communications requirements are identified in a con-
ual manner. For example, records may be identified, but components not
letely defined. This provides a high-level framework upon which the components
he program can be built. Resource allocation can even enter into the system's
iguration at this early stage, with the resources themselves being based on - .
mates of anticipated system performance. Although the computer program that
lts from this level of design has little of the intended functionality of the
1 system, it does, nevertheless, when compiled and executed, permit early evalu-
n of resource consumption and control flow at the system module or task level.

Next, the subprogram structure and supporting data structures are defined.
this stage comes establishment of detailed control and interface design for

L subprograms and data. This step constitutes specification of primary and sup-
subprograms, as well as implementation of how these subprograms interact with

program as a whole.

Note that in both of the first two stages, execution of the program requires
conditionals be resolved in order to permit control flow to proceed. In the

tnce of program functionality to allow these choices to be made dynamically, this
ints to forcing program execution to take a more or less predetermined path.
Le this mode of testing cannot fully substitute for a completely functional mode
)peration, it does permit evaluation of resource consumption and flow of control
)ughout the program. In other words, the first two stages of development are
ilations meant to test control flow and resource consumption at a fairly high
l of detail. These stages will be dealt with in more detail later.

In the third stage, critical functions are implemented with an emphasis on the
r interface. Here, the value of early user interaction becomes manifest. Early .

lback from the user ensures greater user satisfaction with the delivered system.
reader may find it easier to conceptualize this stage of the development as
ambling a degraded version of the completed prototype.

The completion of the fourth and final step constitutes completion of the pro-
jpe, with all functions implemented in their entirety. Depending upon the degree
rigor with which the program designer applies the methodology, the prototype may
nly "functionally equivalent" to the finished system. That is, the prototype's
3rithms, while complete, are perhaps more crudely implemented than they would be
the finished system. It should be reemphasized that verification of the proto- G
has taken place throughout its development. Upon completion of this final

je, a validated prototype exists that can be used as a springboard for full-scale

ilopment of the system.

The four-stage process just described emphasizes the similarities between hard-
development and software prototyping. However, it is possible to reinterpret S
fourtn and possibly the third stage of the process so that the product that

rqes at the end of the process is not a throwaway but actually is the final sys-
• Thus the validated program structure developed during stages one and two forms
irt f the fLnal system. In addition, during stages three and four, actual de-
IaiLqorithms, as opposed to crudely implemented, functionally equivalent

Drithms, are developed. S

5



NSWC TR 82-417

.ess has already been successfully developed at the Naval Surface Weapons Center
ig PSL/PSA with the CMS-2 military programming language. 17 CMS-2 source and

.ct files are used as input, a PSL/PSA data base is produced, and documentation
)rts are subsequently generated. A similar process has been developed by the
rersity of Michigan ISDOS project to build PSL/PSA data bases from Extended

rR.AN code. 18

)L Should Support Early Prototyping

The ability to translate a design into an executable prototype program early on
the design phase is a worthwhile quality but not one that is addressed by tra-

Lonal PDLs. Early prototyping ensures against flaws in the design going un-
iced until late in the design development. Using what is commonly known as the
aleton and stub" approach, early phases of the design can be put forth as execut-
e programs in whatever high-order language is being used. Admittedly, these
grams do not do very much from the standpoint of actual processing, but trace
tements such as "Update of all Great Circle tracks now in progress" can be used

dpsiqn verification until full algorithms are implemented. In the authors'
erience, the Ada programming language has shown itself to be extremely well
ted to this technique.

MARY

Ada matches closely the requirements of an ideal PDL. Like most existing
s, its support for automated documentation is weak. Unlike most other PDLs, it

orporates a prototyping capability. In light of these findings, the authors
roughly endorse the use of Ada itself as a PDL.

PROTOTYPE COMPUTER PROGRAMS

ALIZED PROTOTYPE

With regard to the qualities that one would expect to find in a prototype com-

er program, the authors use a definition different from some of the more commonly S
d viewpoints. A prototype need not be, as some would maintain, a "quick and
ty" attempt to translate the design into executable code. Rather, the prototype
be a more sophisticated representation and can incorporate (albeit in skeletal

m) any portion of the design that is destined to be included in the final system.

ther is the prototype necessarily a "throw-away." This is especially true when
ng a methodology that ensures a high degree of correlation between the prototype S
the design specification. Finally, inefficiency is not a quality to be tolerat-

in a prototype computer program. In other more typical prototypes, the emphasis
pn "functional completeness," however crude the implementations. In a prototype
eloped with the authors' methodology, the emphasis is on "design completeness"

architecture and resource allocation validity. (The reader who is skeptical
ut these remarks is asked to set aside any preferential views on the subject and S
judge the nmethodology in the context of the authors' definition of prototyping.)

19



NSWC TR 82-417 0

Tharacterized by the conditional entry call statement of Ada, again nested within a
loop structure. Unfortunately, the authors have not been able to make full use of
this active/passive philosophy due to the fact that their preliminary Ada compiler,
the Telesoft implementation, 16 did not include the conditional entry call.

A PDL Should be Functionally Similar to the Implementation Language

It is reasonable to assume that if a high-level language is used as a PDL, then
the program designer intends to use the same high-level language as the implementa- 0
tion language. Therefore, not only is the design language functionally similar to
the implementation language, but the two are in fact the same.

A PDL Should Have Unexacting Syntax Constructs

One of the most frequently heard criticisms regarding Ada is the size and com-
plexity of its syntax; the authors concede that Ada does have a great many syntax
rules. In light of this, the program designer should examine the syntax critically
to determine which rules are relevant for a given application and which ones should
go unused. In other words, the very size of Ada enables the user to tailor the
language to a particular situation through the selective elimination of certain
syntax rules. Implicit here is the ability to make the outer syntax of the language 6
as simple or complex as one wishes. [The authors forsee possible tools as part of
the Ada Program Support Environment (APSE) that would be able to identify a speci-
fied Ada subset for a particular project. At the compiler level, subsetting in Ada
is not permitted.] Concerning inner syntax, comment entries and long identifier
names can be used in lieu of free-form English. This is a slightly more restrictive
inner syntax than most PDLs offer. However, this drawback is offset by the benefits .

of an exhaustive identification of conditions and computations that must be
elaborated later in the design. -

A PDL Should Support Validation and Verification

What better way to verify a design specification than to have a working proto-
type at any stage in the design development process. As was stated earlier, the
ultimate test of a program design is the ability to express that design as execut-
able code. This is, by far, the fundamental advantage of using a high-level
language as a PDL. Future efforts combining program correctness techniques with

executable PDLs would appear to be extremely appropriate.

A PDL Should Support the Generation of Documentation

Here is one area in which Ada (and, for that matter, virtually any high-level
programming language) falls short of the idealized PDL. However, since Ada (and

other high-level languages) are machine processable, the authors envision some pos-
sible ways of alleviating this shortcoming. One possible approach might be the
development of some support computer programs (perhaps as a part of the APSE) that
could search through Ada code listings and produce input files for some data storage
and analysis language [e.g., the Problem Statement Language/Problem Statement

Analyzer (PSL/PSA)] and thereby produce various forms of documentation. Such a

18
8 .- .-i-2 .



NSWC TR 82-417

Sample Ada Timed Entry Call Statement: .

select
OPERATOR CONSOLE SUPPORT.RECEIVE MESSAGE (THIS MESSAGE);
-- Perform a rendezvous if one is possible within 30 seconds

or
delay 30.0; 0
-- Operator Console Support busy .... do something else

end select;

Sample ADA Conditional Entry Call Statement And Exception Statement:

select
MAILBOX.SEND-MESSAGE (THISMESSAGE);

else
if LENGTHQ (MESSAGEQUEUE) > MAXIMUMMESSAGECOUNT then

raise MESSAGE QUEUE FAULT;
end if; ,

end select;

Binary Semaphore Construct Using The Ada Selective Wait Statement:

task SEMAPHORE is
entry LOCK;
entry UNLOCK; -

end SEMAPHORE; -

task body SEMAPHORE is
LOCKED: BOOLEAN: = false;

begin
loop

select 6
when not LOCKED =>

accept LOCK do

LOCKED: = true;
end;

or
when LOCKED = >

accept UNLOCK do

LOCKED: = false;
end;

or
terminate; 0

end select;
end loop;

end SEMAPHORE;

FIGURE 10. ADA STRUCTURES THAT SUPPORT SEQUENCING LOGIC

17 S %.~%

1 ':':'::



NSWC TR 82-417

0 w

0

with TRACKFILEPACKAGE.
TRIGONOMETRYSUBPROGRAMPACKAGE;

procedure LOXODROME__UPDATE Is
ARCLENGTH: FLOAT;
RADIUS: FLOAT;
OLDLATITUDE: FLOAT;
RADIUSOFEARTH: FLOAT: =2.0856E07;

PI: FLOAT: = 3.14159;
begin

-Traverse the Track File and examine the Path field of each active
-track to see if it Is a Loxodrome track .... if so, update the
-track's record as per "The VNR Concise Encyclopedia of Mathematics"
-by Gellert, et. al.15

for INDEX in 1.-100 loop

if TRACK__FILE(INDEXI.ACTIVE and Ib
TRACKFILEIINDEX). PATH = LOXODROME then

ARCLENGTH: TRACKFILEIINDEX).SPEED* TIME;

RADIUS: =RADIUSOFEARTH + TRACKFILEIINDEX).ALTITUDE;

OLDLATITUDE: =TRACKFILEIINDEX).LATITUDE;
TRAC-FILI INEX).LATIUDE

TRACKFILEINDEXILATITUDE+

(ARCLENGTH *COS(TRACKFILEIINDEX).HEADING) /RADIUS);

TRACKFILEI INDEX).LONGITUDE:
TRACKFILEI INDEX). LONG ITU DE +

TANITRACKFILE(INDEX).HEADING)
ULN TAN(PI/4.0 + TRACKFILE(INDEX).LATITUDE/2.O)) -

(LN TAN(PI/4.0 +OLD__LATITUDE/2.0)));

end if:

end loop;
end LOXODROMEUPDATE;%

FIGURE 9. STEP-WISE REFINEMENT OF AN ADA SUBPROGRAM (Continued)

16



NSWC TR 82-417

0

with TRACKFILEPACKAGE;

procedure LOXODROMEUPDATE is

begin

STALL (0.1); -- time in seconds assumed

-- Traverse the Track File and examine the Path field of each active 6

-- track to see if it is a Loxodrome track .... if so, update the

-- track's record as per "The VNR Concise Encyclopedia of Mathematics"

-- by Gellert, et. al.15

end LOXODROMEUPDATE;

with TRACK FILEPACKAGE;

procedure LOXODROMEUPDATE is

begin

-- Traverse the Track File and examine the Path field of each active

-- track to see if it is a Loxodrome track .... if so, update the S

-- track's record as per "The VNR Concise Encyclopedia of Mathematics"

-- by Gellert, et. al. 15

for INDEX in 1..100 loop

if TRACK FILE(INDEXI.ACTIVE and

TRACK FILE(INDEX).PATH = LOXODROME then 5

STALL (0.001); -- time in seconds assumed

-Arc Length =Speed *Time

-- Radius = Radius of Earth + Altitude

-- New Latitude = Latitude + (Arc Length cos(Heading)/Radius)

-" New Longitude = Longitude + tan(Heading ((In tan(Pi/4 +

New Latitude/21) - (In tan(Pi/4 + Latitude/211)

end if;

end loop; 0

end LOXODROMEUPDATE;

FIGURE 9. STEP-WISE REFINEMENT OF AN ADA SUBPROGRAM

15

~. .. ... ..... . ...................



NSWC TR 82-417

A PDL Should Support Top-Down Design and Step-Wise Refinement

Part and parcel of the top-down design philosophy is the notion that details of
the design should be developed in an evolutionary, step-wise fashion. While step- S
wise refinement can be used in program design environments other than top-down
(e.g., bottom-up), the selection of top-down as the design approach necessitates the
use of step-wise refinement. Early design efforts are lacking in the area of speci-

fic details, while later phases of the design possess ever-increasing amounts of -

detail until the entire design is specified in the final phase. The initial stub
contains little or no information on how the subprogram will ultimately do its pro- 0
cessing. However, subsequent versions of the subprogram contain increasing amounts
of detail until, finally, the subprogram's algorithm is complete.

The way in which a high-level language can be used in step-wise refinement of -
the design can be seen from the following generalized example. A subprogram is"-
proposed as an addition to the already existing design, but specification of the S

subprogram's processing is not yet feasible or practical. Instead, the subprogram
is implemented in the form of a mere stub. Later in the design process, the subpro-
gram's processing is "sketched out" in standard English and/or mathematical symbol-
ogy contained in comment entries. Finally, in completing the prototype, the subpro-
gram's processing is specified in executable algorithmic form. A specific example,
expressed in Ada, can be seen in Figure 9. A high-level language (especially one S
like Ada) used in such a manner helps to support the notion of top-down system de-
sign. It should also be mentioned that the separate compilation capability of Ada
makes it possible to integrate data and subprogram packages at different levels of
detail in the design phase.

A PDL Should Support Low-Level and High-Level Sequencing Logic

The logical sequence in which events occur can be easily expressed through a.-.
number of built-in Ada features. Low-level sequencing logic can be handled by the
Ada if statement, the loop statement, or the case statement. High-level sequencing .
logic, on the other hand, is dealt with using more sophisticated Ada structures such _
as the entry call, the timed entry call, the conditional entry call, and the selec-
tive wait statement (Figure 10). The entry call initiates a rendezvous and the
timed entry call enables the initiation of a :endezvous at any point within a speci-
fied time interval. The rendezvous mechanism in Ada is useful in handling the
synchronization of tasks. Asynchronous task communication, on the other hand, can
be facilitated by the inclusion of an intermediary "mailbox" task. For example, if
Task A wishes to send a message to Task B asynchronously, then Task A performs a
rendezvous with the mailbox task that places the message in a queue. Task A then
continues processing. The mailbox task performs a rendezvous with Task B once the .-

message reaches the top of the queue. (The necessity of creating this mailbox task -

to effect asynchronous communication is a controversial aspect of the rendezvous
mechanism. However, efficient implementations have been shown to be possible.

2 4 )

Associated with this asynchronous capability is a feature that has been called the
"active/passive" task structure. I0 Simply put, certain tasks can be designated as
pas;sive tasks in that they render a service to other tasks. (The mailbox task can - "
he regarded as such.) They are generally characterized by their use of the Ada
selective wait statement nested within a loop [e.g., the implementation of
semaphores (Figure 10)]. Other tasks are referred to as active because they perform -
a fundamental unit of processing within the system. These latter tasks are usually

14

_9



NSWC TR 82-417 •

task body GLOBALCOORDINATEGENERATION is
INTERVAL: constant DURATION: 0.01;
NEXTTIME: CALENDAR.TIME;
-- CALENDAR here refers to a predefined library package,
-- whose function CLOCK returns the current value of TIME -.................................................. ...... .............................................. "-:; .

-- Other local data declarations 0

begin

accept COMMENCE do

THIS _TASK.ID: = 4;
THISTASK.NAME: = "Global Coordinate Generation";

-- Other initialization routines

NEXTTIME: = CALENDAR.CLOCKI I + INTERVAL; S
end;
loop

select
accept RECEIVE MESSAGE (MESSAGE: in MESSAGE TYPE) do

ASSIMILATENEW _INFORMATION; .. ,.-

-- Assimilate new information into data base

end;
or

-- accept other entries and perform processing

or

delay NEXT TIME - CALENDAR.CLOCK:'
PERFORM PERIODIC UPDATE;
- Perform periodic update routines
NEXT TIME: = NEXT TIME + INTERVAL;

Generate message(s) to be sent to 0
-- the Mailbox for subsequent transmittal

to its(theirl recipient(s)

MAILBOX.SEND MESSAGE (THIS MESSAGE);
else

null;

end select: .
exit when END OF PROGRAM;

end loop;
end GLOBAL COORDINATE GENERATION.

FIGURE 8. A TYPICAL ADA TASK

13

....................... ............................. ....... . ... .... .. .. . .. ...



NSWC TR 82-417

package body MESSAGE QUEUE is

procedure ADDO IA QUEUE: in out QUEUE;
MESSAGE ITEM: in MESSAGE) is

-This procedure adds a message to
-the and of the queue

TEMPORARY: POINTER;
begin --

TEMPORARY: new NODE(MESSAGE ITEM, null;
if A QUEUE.HEAD: NULL THEN0

A aUEUE.HEAO: TEMPORARY;
A QUEUE.TAIL: TEMPORARY;

else
A QUEUE.TAIL.ITEM POINTER: TEMPORARY;
A QUEUE.TAIL: =A QUEUE.TAIL.ITEM POINTER;

end if;

A QUEUE.COUNT:-A QUEUE.COUNT.-1;
and ADDQ;

end MESSAGE QUEUE;

FIGURE 6. ADA PACKAGE BODY (INVISIBLE PORTION)

procedure GREATCIRCLE _UPDATE is

begine
-Update all Great Circle track records as per

"-American Practical Navigator"

-by Nathaniel Bowditch13

null;

end GREAT CIRCLE UPDATE;

procedure SHIP MOTION GENERATOR INTERFACE is

begin

Assimilate ship motion information

null;

end SHIP MOTION GENERATOR INTERFACE;

procedure TRACK REPORT FROM SPY RADAR is

begin

When completed, thE orograrn will at this time display to the

operator a list of all targets that are currently being
tracked by the SPY Radar System

null:

end TRACK REPORT FROM SPY RADAR,

FIGURE 7. STUBBED-OUT ADA SUBPROGRAMS

12



* . - . -. - * -- I- t . :---. 7 . - -. -, -. -.

NSWC TR 82-417

package MESSAGEQUEUE is

type QUEUE is private;

type MESSAGE is
record -

ID: INTEGER; .

SOURCE: TASK NAME;
DESTINATION: TASKNAME;
-- Content field....

-- to be decoded at destination
end record;

procedure ADDQ (A QUEUE: in out QUEUE;
MESSAGE ITEM: in MESSAGE);

procedure DELETEQ IA QUEUE: In out QUEUE;
MESSAGE ITEM: out MESSAGE);

function FRONTQ (A QUEUE: in QUEUE) return MESSAGE;
function IS EMPTYQ (A QUEUE: in QUEUE) return BOOLEAN;
function IS MEMBERQ (A QUEUE: In QUEUE;

MESSAGE ITEM: In MESSAGE) return BOOLEAN; -.-

function LENGTHQ (A QUEUE: in QUEUE) return INTEGER;

private -

type NODE;
type POINTER is access NODE;
type NODE is

record

ITEM: MESSAGE;
ITEMPOINTER: POINTER:= null; S

end record;
type QUEUE IMAXIMUMCOUNT: INTEGER) is

record

HEAD: POINTER: = null;
TAIL: POINTER: = null;
COUNT: INTEGER: =0;

end record;

end MESSAGEQUEUE;

tot-

FIGURE 5. ADA PACKAGE DECLARATION (VISIBLE PORTION) WITH PRIVATE TYPES

menp

. . . . -. . .

. . -. -. .% .



. . - .' .

NSWC TR 82-417

A PDL Should Support Detail-Hiding and Data Abstraction

A good example of detail-hiding is the case of a frequently used subprogram.
The issue of when this subprogram should be invoked and what processing it performs
is independent of how the subprogram's processing is implemented. Thus, the details
of how the subprogram performs its processing can and should be invisible to those
portions of the system concerned with control flow. (Almost all high-level program-
ming languages provide for this kind of detail-hiding.) Ada's visibility rules lend
themselves well to this hiding of details and permit the declaration of functions
and procedures to be visible, while their bodies remain hidden (Figure 5). In the
area of data abstraction, Ada permits the declaration of private data types, the
specifications of which are invisible to the user (see Figure 5). The package
structure is the feature of Ada that permits subprograms and/or data structures to
be logically separated from the program units that utilize them (Figure 6). The

package permits encapsulation of data types. Data objects of the defined type may .
then be declared and manipulated using the appropriate operations. The user inter- .

face to subprograms and data is made visible in the package specification, while
implementation details are hidden in the package body. - -

A PDL Should Permit Expression of Unspecified Parts of the Design

Comment entries and descriptive subprogram calls are instrumental in outlining
unspecified portions of the design. English phrases and sentences are used in lieu
of actual processing algorithms. Subprograms are "stubbed out" (i.e., are speci- x.
fied, but contain no true processing (Figure 7)]. (Lengthly Ada identifiers also
prove useful in this regard.) If it is necessary to simulate central processing
unit (CPU) time consumption by an algorithm where only a stub presently exists, a

subprogram designed to stall for a period of time may be employed. An example will -
" ""

be given in the discussion of top-down design and step-wise refinement later in this .-.-

section.

A PDL Should Permit Expression of the Physical Software System Architecture

The Ada programming language is particularly well suited to this area, not only
with regard to control flow architecture, but with regard to data structures as

well. The Ada task construct is useful in separating the various modular components
of a system (Figure 8) when these modular components represent portions of the program
that are intended to run concurrently. The rendezvous concept in Ada is the princi-

pal mode of communication between two or more Ada tasks and, as such, is exceedingly

useful in expressing the communication protocol among modules. Concerning the ex-
pression of data structures, the Ada package construct makes it easy to separate
data dedicated to certain functional areas from other data items. Ada visibility
rules also play an important role in expressing system architecture. These results
help to delineate those data items and subprograms that are the exclusive domain of

a particular module from those that are globally accessible. (The development of

the physical design will be dealt with in more detail later in this report.) *. -

10
...................................*..-.-.,-_-.. ..... .... ....



NSWC TR 82-417

package TRACKFILEPACKAGE is

type TRACK__PATH__TYPE is
(GREATCIRCLE, LOXODROME);

type TRACKRECORD is
record

ACTIVE: BOOLEAN;
ID: INTEGER;
PATH: TRACK PATH TYPE; 

LATITUDE: FLOAT;
LONGITUDE: FLOAT;
HEADING: FLOAT;

ALTITUDE: FLOAT;
PITCH: FLOAT; L;

SPEED: FLOAT;
end record;

TRACKFILE: array 1110-)
of TRACK RECORD;

type MANEUVERTYPE is (NEW_.SPEED,
NEWALTITUDE. NEW PITCH,

NEWHEADING);

type MANEUVER__SPECIFICATION is
record

TRACKID: INTEGER;

ACTIONTOBETAKEN: MANEUVERTYPE;
GOALTOBEATTAINED: FLOAT;

end record;

end TRACK FILE PACKAGE;

with TRACK_ FILE__PACKAGE;

task body GLOBALCOORDINATEGENERATION is
begin

-

end GLOBALCOORDINATE GENERATION;

FIGURE 4. SAMPLE DATA PACKAGE FOR TRACK-RELATED MODULES

9

.. HEADIN... . . .........



NSWC TR 82-417

! 12. Support the generation of documentation

13. Support early prototyping

ANALYSIS OF ADA AS A PDL

In order to pursue an evaluation of Ada as a design language, each of the
"ideal PDL" criteria will be examined and an assessment of Ada's performance in each
area will be made.

A PDL Should Be Readable

One must keep in mind the fact that a design specification is primarily intend-
ed to communicate ideas to people. In light of this, a PDL must take into consid- S
eration the human element, and it should assist the individual in understanding the
design. Therefore, the ability to express design ideas in a highly verbal, English- .•."

like manner is a quality to be desired in a PDL. Based upon their experiences, the
authors state unequivocally that Ada has a highly readable syntax. Ada offers a
great deal of versatility in terms of readable syntax, highly descriptive identi-
fiers, and user-defined types. Identifiers such as "TRACKREPORTFROMGLOBAL S
COORDINATE GENERATION" and "SELECT TARGETS FOR DETECTION PROCESSING" exemplify Ada's
capability in this regard. Nevertheless, almost all allow for some kind of comment
entry. Consequently, liberal use of comment entries and descriptive identifiers,
combined with the inherent readability of Ada syntax, can render a design as read-
able as the program designer cares for it to be. -

-S

A PDL Should Be Standardized

Standardization does present a problem with most high-order languages.
Installation-dependent variations for languages are commonplace. Ada standardiza-
tion has always been an extremely important language goal. The language reference S
manual8 has been submitted to the American National Standards Institute (ANSI) for
adoption as a standard. ANSI certification has now been achieved. Standardization " .

of the language will undoubtedly prove to be a powerful force in widespread Ada
acceptance and use.

A PDL Should Permit Global Data Structures and Subprograms

The Ada programming language's package structure, combined with its visibility
rules, makes it simple to declare-certain groups of data and/or subprograms as glo-
bal or limited global (i.e., accessible by some modules, but not all (Figure 4)H.
Through the use of the Ada with statement, packages can be made accessible to how-
ever many modules the program designer wishes.

8

7.... . "



NSWC TR 82-417

as a tutorial on the Ada language. Consequently, the authors feel that the reader
should take the initiative to research the Ada language (by examination of any of a
number of worthwhile books on the subject8 -10 ) in the event that any serious

* questions should arise.

PROGRAM DESIGN LANGUAGES

IDEALIZED PDL

The answer to the question of whether or not Ada can be used as a PDL hinges
upon two factors: first, the qualities of an "ideal" PDL; second, the extent to
which Ada possess these qualities. The first quality concerning the use of Ada as a
PDL involves the dichotomy between "inner" and "outer" syntax.1 1  Outer syntax re-
fers to a specific set of syntax rules intended to represent the general structure

of software design (e.g., data bases, routines, and access paths), as well as flow
of control within routines. Inner syntax has little or no syntactic or semantic
restraints and is used to describe (either in general or detailed form) data

" structures and/or algorithmic features. With regard to the use of Ada as a PDL, the
outer syntax would pertain to the actual syntax of Ada. The inner syntax, on the
other hand, being less structured, would correspond to Ada comment entries and
descriptive identifiers.

The following is a list of what the authors feel are additional significant
• .qualities needed in a PDL in order to ensure its usefulness as a design specifica-

tion tool. These qualities are an amalgamation of the authors' opinions and the
* results of the first meeting of the IEEE task group on recommended practices and

guidelines for an Ada PDL. 12  The reader is encouraged to add to or delete from this
list to suit a particular situation. Ideally, a PDL should

1. Be readable

2. Be standardized

3. Permit global data structures and subprograms

4. Support detail-hiding and data abstraction

5. Permit expression of unspecified parts of the design

6. Permit expression of the physical software system architecture

7. Support top-down design and step-wise refinement

.. 8. Support low-level and high-level sequencing logic

9. Be functionally similar to the implementation language

1Q. Have unexacting syntax constructs

11. Support validation and verification

7

Afabeis



NSWC TR 82-417

When the algorithms are well understood and reliable resource consumption pre-
dictions can be made, the above-mentioned approach may be a particularly effective,
cost-saving expedient. In such instances, validation of the program structure and
of the control flow and event sequencing becomes the important goal. Stages one and
two serve this purpose admirably, giving one the best of both worlds. Important
intermediate validation milestones are accomplished, but the code developed thereby,
also becomes a part of the final system. Ada's contribution to this process is the
provision of a tool sufficiently human-engineered and expressive to serve the needs
of the system architect, designer, and also the programmers.

The methodology is especially well suited to the real-time programming environ-
ment, as can be seen from consideration of the following sequence of events. The
program designer, in keeping with the top-down philosophy, proposes some incremental
change to the design. The change is interpreted as high-level code, at whatever
level of detail is appropriate for the particular stage of design development. The
design is then compiled and executed (it is, after all, a bona-fide program). Since
the design change has been committed to code and since it is then executed in its
natural real-time environment, interactions between the new segment and other pro-
gram segments can be observed and evaluated. The program designer can then render a
judgment as to the success of the design change and accordingly determine the next
step in the development. This is not to say that the methodology cannot be used in
a non-real-time environment; however, it is fair to say that the methodology is most
effective when applied to real-time problems.

With this methodology, each stage in the prototype's development can be saved.
By so doing, the traceability of the requirements to the physical program is more
easily achieved. Furthermore, it appears that the process described herein can be
combined with other methodological concepts to tie the design process more closely
to other aspects of software development. Concerning documentation, the design's
executability renders it amenable to automated processing for design information
(this will be mentioned again later). Concerning program correctness and verifica-
tion, the concept of program proof-of-correctness techniques7 appears to be a natu-

* ral bridge between the second and third stages of prototype development. The
authors hope to explore these areas in subsequent research. A

In order to determine the validity of this methodology, it will be shown that:

1. The high-level language being used (in this case Ada) is a fitting substi-
tute for a PDL. This will be done by proposing a number of qualities that are

indicative of an "ideal" PDL, and by subsequently showing that Ada possesses
most, if not all, of these qualities.

2. The computer program produced as a result of this methodology is a valid
prototype. Characteristics of an "ideal" prototype computer program will be
proposed; the methodology's resultant program will be measured against this
model.

3. The authors will elaborate on the development stages by means of illustra-
tive examples.

Numerous references to the Ada programming language syntax are made throughout
this report. While the authors have tried to include concise explanations with each
syntactic reference, the reader must bear in mind that this report is not intended

6



bI

NSWC TR 82-417

Ideally, a prototype computer program should

1. Reconcile functional requirements with physical design
I

2. Permit evaluation of resource utilization

3. Permit evaluation of control flow and task synchronization

4. Permit evaluation of data flow

5. Permit evaluation of functionality and operational suitability

DESIGN PROTOTYPING VS CONVENTIONAL SOFTWARE DEVELOPMENT

What follows is an elaboration on the above qualities of prototype programs.
In order to pursue an evaluation of design prototypes, each of the "ideal prototype"
criteria will be examined and an assessment of the means for achieving suitable
performance in each area will be made.

A Prototype Computer Program Should Reconcile Functional Requirements With Physical
Design

In order to prevent any misunderstanding on the part of the reader, the authors
state unequivocally their interpretations of some commonly heard, though ill-
defined, terms. Functional requirements are the capabilities that the program must
exhibit to perform its intended job. In a very real sense, the requirements define

' the job that is to be done. The "functional design" or "logical design" is an ex-
pression of the interrelationships between the functional requirements. More

specifically, the functional design is composed of four parts: the program's re-
quired functional capabilities (i.e., it includes the tasks the program is expected
to perform); the relationships among the functions (i.e., which functions use data
from other functions and which functions supply data to other functions); the data

requirements; and the operator interface with each of the functional areas.

The physical design of a computer program should be closely related to the
functional requirements. The functional design of a computer program should map

*' into the physical design and that mapping amounts to the designer's attempt at an
implementation that fulfills the functional requirements. Physical modules are
instantiated that purportedly perform the functions as specified in the program
requirements.

Reconciliation of the physical design and functional requirements is left to
the discretion of the designer and/or projrammer. The interpretation of logical
functional areas into physical ones is not necessarily done on a one-to-one basis. ,|

* "That is, two or more functions may have their processing done in a single physical
- module, while at the same time two or more physical modules may perform processing

. for a given functional area.

Traditionally, this reconciliation of the physical with the functional is ac-
complished by the translation of the functional design into some physical design - I
medium (either a flowchart or a conventional PDL). If incremental development is

20



NSWC TR 82-417

practiced at all, it is done by means of computer program "builds." This process
may seem at first glance to be closely related to the authors' methodology; however,
while there are similarities, the differences between the two procedures are sub-
stantial. The reader is asked to consider Table 1. The "build" process essentially 6
implements the table column by column, with groups of columns representing succes-
sive builds (i.e., a particular requirement is specified, and each module of the
program is implemented so that it supports that particular requirement). Tests and
validation follow each build.

TABLE 1 . PHYSICAL DESIGN VS FUNCTIONAL REQUIREMENTS MATRIX

" - ,FUNCTION Function Function Function Function Function Function

MODULE No. 1 No. 2 No. 3 No. 4 No. 5 No. N

MODULE NO. 1 X X

MODULE NO. 2 X

* MODULE NO. 3 X X

MODULE NO. 4 X X

MODULE NO. 5 X

IMODULE NO. M " •X"IJ

A significant question to ask is whether there are any deficiencies in this
approach and how it differs from the prototyping approach described herein. One
possible deficiency may be that, with each build, modules can require reworking. It
is entirely possible that in the process of modifying the modules, changes occur
that invalidate earlier (correct) segments and, consequently, any testing performed
on them. Obviously, a row-by-row implementation is desirable to avoid this problem. 0

The design prototyping methodology, unlike the builds process, emphasizes the
- physical rather than the functional implementation. Thus, all modules first appear

physically as stubs before any of them are developed in more detail. The step-wise
refinement process enables each module to be developed in just this way. Once the

* prototype is developed and validated, specification development can be completed and S
production of the final system can begin. To avoid the problems mentioned with the
build process above, the final system should implement Table 1 on a row-by-row

basis.

It is assumed that the logical design and associated requirements are well
defined prior to the application of the authors' techniques. The creation of the -

* physical design proceeds in much the same fashion as in the traditional approach.

21

"%.



NSWC TR 82-417

The program designer interprets the program requirements into some design medium
(namely, a high-level programming language) and tests this design against the pro-

gram's requirements. The major difference occurs in the fact that the physical

design is executable (i.e., the logic flow can be traced or simulated) from the very S_
beginning when using the authors' mechodology.

A Prototype Computer Program Should Permit Evaluation of Resource Utilization

The term resource refers to a great many aspects of a computer system. Most S
readers will probably think of hardware items (e.g., CPUs, I/O devices, and memory)
in connection with computer system resources. In terms of software, a resource can

include such items as shared programs, shared data, and messages transmitted among
processes. Allocation involves the matching of available resources to the requests

for these resources in such a way as to ensure the best design possible.

Validation of resource utilization can be thought of as determining that a
given resource is being used so that no conflicts are produced with regard to the

use of that resource. This implies that any software resource must first be defined
if its allocation is to be made free of conflicts. Likewise, component hardware

units must be specified before their allocation can be dealt with. CPU time is a
factor in resource allocation that must be addressed. The amount of time a module -
gets and whether or not it obtains that time when needed are important considera-

tions. Likewise, memory consumption must be considered.

Time constraints can be taken into account by the use of a subprogram designed
to stall for a specified period of time (Figure 11). Calls to such a stall routine
can be flagged with special comment statements to permit subsequent removal by an 0

APSE tool. Memory can be consumed in a similar fashion if hardware characteristics

permit.

procedure STALL (DELAYTIME: in INTEGER) is

INDEX: INTEGER;

begin
for INDEX in l..DELAYTIME loop

-- Perform some operation chosen for
-- its consumption of one unit of time 0

end loop;

end STALL;

STALL (20); -- stall for 20 units of time

FIGURE 11. CPU TIME CONSUMPTION EXAMPLE

Since hardware resources can affect the allocation of software resources, the
failure to specify them until all software resources have been specified can produce .-

serious difficulties. For example, dynamic memory consumption must be considered -

22

i~:::-. .: . :..:. -: ::.i- ):::: . :-::-: :. :.======================= :-: -i-.::) :- i- .: ii i :: )-:i : iS i



NSWC TR 82-417

along with static module memory requirements. Memory and CPU utilization can be
affected by the choice of machine. Machine-dependent hardware considerations in-.". -
clude the existence of cache memory, instruction-related (e.g., base register)
machine dependencies, and data memory allocations. .

Since the authors' methodology requires an executable design, the specification .:.-
of hardware resources takes place in the same time frame with software resource
specification. This enables all resources (hardware and software) to interact from ..-.-

the design's beginning.

0

A Prototype Computer Program Should Permit Evaluation of Control Flow and Task
Synchronization

What is control flow? First of all, control has to do with those qualities of
a computer program that determine which events will take place, how they will take .
place, and when they will take place. Control flow is the sequence (in time) in
which these events occur in the execution of the computer proqram.

Therefore, validation of control flow requires the determination that portions
of the program execute in the order prescribed, either explicitly or implicitly, in

the system requirements. Time sequencing checks need to be performed, based on test S
scenarios specifically designed for this purpose.

Traditionally, this can only be done upon completion of the design phase. Upon
completion of a paper design, the control structure has already been specified; the
time sequencing of this control structure is a fundamental part of the design. The
interdependence of events in the control structure means that any corrections to the O .
control flow have potentially far-reaching consequences.

In the authors' methodology, validation occurs throughout the design phase, as
each component of the control structure is implemented. The component is integrated
into the time sequencing scheme; this sequencing is then validated, in spite of the "

fact that not all components are as yet fully elaborated. Given an Ada run-time .
support environment, the effects of inserting a new task can, in fact, be tested.

* In addition, Ada provides the capability of assigning priorities to tasks, which
facilitates the testing process. Since the design is executable from its very
beginning, control flow test scenarios can be constructed with ever-increasing com-
plexity and can be run at various stages in the design development.

Since functionality is not present to provide specific data values to govern
control flow (e.g., to evaluate boolean expressions), conventions must be adopted
early in the prototype design and development in order to permit program execution
to take place (Figure 12). One such convention is provided for by the Ada separate
construct.8  Such conventions can be based on main path considerations, statistical
considerations (i.e., modelinq and simulation), or other a priori information. 9
Later, they will be replaced by actual decisions as the design is elaborated.

taskWhat is task synchronization? Task synchronization involves a specific kind of -

task communication. Specifically, receipt of a messaqe (possibly null) by a task .
occurs in the same time frame as the transmittal of that message by the sending

task. Thus, execution of the two tasks is synchronized at that point in time. The
two tasks may be said to rendezvous. The Ada task rendezvous mechanism is designed

23

-9

• -
. . . . .. . .



NSWC TR 82-417

for the synchronization of concurrent processes, especially when used with the
active/passive task constructs (Figure 13). This is the opposite of asynchronous
communication, in which a message is received at a time later than when it was sent.
The sending task proceeds independent of message receipt by the second task. S

task body GUNWEAPON SYSTEM INTERFACE is 0

function THISTARGET_ ISTO_ BE_ ENGAGED is separate;

begin

if THIS TARGET IS TO BE ENGAGEDI )then
PERFORM PERIODIC_ UPDATE;

end if;

end GUNWEAPONSYSTEMINTERFACE;

separate (GUNWEAPONSYSTEMINTERFACE)
function THIS TARGET IS TO BE ENGAGED return BOOLEAN;

VALUE: BOOLEAN: = true;
begin 0

-- Since the algorithm for the determination of this
boolean condition does not yet exist, a value of

-- "true" will be returned for simulation purposes
return VALUE;

end THISTARGET ISTOBE ENGAGED;

FIGURE 12. ADA SEPARATE FEATURE

Verification of task synchronization essentially involves the determination
that the above-mentioned rendezvous occur at the correct time, in the correct order,
and between the appropriate tasks.

Once again, the traditional paper design postpones such a verification until
the end of the design phase. "Fine-tuning" the task synchronization structure at
this point in the program's development is difficult, because of the interdependence

of the tasks.

24

So ,

., , - _ . .' . .-. . -.... . ..L , .. . . . - . , , , , ..' -. .' . " . .. . ., , , .



NSWC TR 82-417

Ada Task with Active Structure:

task TRANSMITTER;

task body TRANSMITTER is

begin
loop

select B
RECEIVER.GET MESSAGE;
-- Initiate rendezvous

else
-- If rendezvous not immediately possible,

-- do something else S
end select;

end loop;

end TRANSMITTER;

Ada Task with Passive Structure:

task RECEIVER is

entry GET MESSAGE;

end RECEIVER;

task body RECEIVER is ,

begin - .

loop
select

when CONDITIONSAREAPPROPRIATE =>

accept GET MESSAGE do

-- Assimilate message ,P

end;

or

terminate;
end select;

-- perform other processing

end loop;

end RECEIVER;

FIGURE 13. ADA TASK SYNCHRONIZATION MECHANISM

25 -.'



7 .. 7-*.I .. I.

NSWC TR 82-417 0

With the authors' methodology, all tasks are created and interfaced at the same

time, so that any particular task's synchronization with other tasks is verified

and, in effect, integrated into the system. Synchronous communication between tasks
is directly supported by the Ada rendezvous mechanism (Figure 13), which enables the

verification of task synchronization throughout the design phase before costly .-

errors develop. Asynchronous communication requires some form of mailbox.

Ada's suitability in the issue of task synchronization can best be demonstrated
by a comparison of Ada's capabilities with those of similar, proven systems. Table 2
exhibits such a comparison of Ada with the AEGIS Tactical Executive System (ATES)19

and the Digital Equipment Corporation (DEC) VAX Virtual Memory Operating System
(VMS).20,21

A Prototype Computer Program Should Permit Evaluation of Data Flow

Stated simply, data flow concerns how the various modules of the program trans-

mit information to the proper recipients and how these same modules receive informa-

tion from the proper sources. Given the subtleties of shared data and synchronous/

asynchronous message transmittal, this may be an oversimplification. Nevertheless,
transferral of information from point A to point B is the essence of data flow.

Confirmation that this transferral occurs as specified in the system's requirements

constitutes data flow validation.

More specifically, validation of data flow concerns determining if a unit 
of . -

information is emanating from the correct source and if that information is arriving

at its appropriate destinations (Figure 14). It also deals with whether or not
information is received in a timely manner (while the information is still "fresh").

Traditionally, this is done upon completion of the design development and is done

largely by means of test scenarios.

In a conventional "paper design," shared programs and data can be specified in
the form of flowcharts, data tables, or other symbolic representations. Similarly,
message traffic can be outlined through the use of message tables. However, such a

specification is far more abstract than the programs, data structures, and message.-

networks that these symbols are meant to represent. It is, at best, difficult to

confirm the conflict-free use of these software resources based upon a conventional
design specification document. Similarly, CPU resource utilization is difficult to
evaluate on paper. Rather, validation of resource allocation is normally left to
the code and debug phase, when all design components have already been specified.

The problems inherent in this approach should be obvious to the reader. By the time

the design phase is completed and the specification of software resources has al-
ready been made, the relationships of one resource to another are already fixed. As

a consequence, the resources' allocations are implicitly specified in the program

design. Verification of conflict-free use of resources can truly take place only
once those resources have been given substance in a prototype program. Problems

with resource allocation that arise this late in the program's development could

have been caught sooner if there had been a verification mechanism available early

in the design phase.

26

S



NSWC TR 82-417

TABLE 2. A COMPARISON OF ADA, ATES, AND VMS

Ada ATES VMS

I Invocation of Entry call state- Executive service Sender queues
N message by mentin sender request from write request to

T sender sender receiver's mailbox

E
R Location of Parameter in entry User common data; Mailbox message
_ message call statement; temporary storage block

M data structure
0
D Receiver Entry call Message processing Association withU identification statement table mailbox into which
L 

message is put

E Acquisition of Parameter in accept Pointer to message Message placed in 6

message statement location receiver's mailbox

M Message receipt Accept statement Scheduling of Receiver reads mes-
M method in receiver receiving module sages in mailbox by
U at message entrance queuing read request .N ,-___ _ __ _ __ _-__ __ _ __ _ __ _
N
I Message receipt Rendezvous comple- No acknowledgment Event flag or soft-
C acknowledg- tion; out parameter ware simulated in-
A ment of accept statement terrupt (optional)
T
I Sender's Upon rendezvous Upon receiver's in- Once the write

O earliest time completion sertion in Priority operation has been
N of re-activation Scheduling Queue initiated

Initiation of Upon task Module itself; an- System scheduling
S scheduling initiation other module; ATES routines

program component
H
E Module priority Optional All modules priori- All modules
D tized (by user) prioritized

U
L -__ __"_-'__."_
I Identification Highest priority Contained in Highest priority

N of module to be task (when scheduling "packet" module that is •
G scheduled applicable) executable
/ "____________________________

S Event-driven Yes Yes Yes

U scheduling
S
P _
E Module suspen- While entry call Priority-based Module itself/other

N sion criterion pending; while module invokes sys-
S accept pending tern service routine

0 Inhibition of No Yes No

N suspension by 0
module

27'-..-• S

*- .- . - .



NSWC TR 82-417

MAILBOX

accept SEt- )_MESSAGE(THISMESSAGE) do
-- put THIS__MESSAGE in message queue

end;

-when THIS__MESSAGE reaches top of queue,
-make entry call to recipient task

GLOBALCOORDINATEGENERATION.RECEIVEMESSAGE
fTHISMESSAGE);

MESSAGEQUEUE
messages are dispatched by
mailbox to their destinations

-until THISMESSAGE is at top
-of queue

GLOBAL COORDINATE GENERATION

accept RECEIVE MESSAGEITHIS MESSAGE) do
-assimilate THIS MESSAGE

end;

FIGURE 14. INTER-TASK MAILBOX COMMUNICATION STRUCTURE

28



NSWC TR 82-417

Such a mechanism is provided by the authors' methodology. Because their meth-
odology enables early prototyping, software resources take on a more tangible qual-
ity early in the design phase. For example, allocation of a shared data resource
(Figure 15) is far easier if that resource takes the form of an accessible data .
record in a fledgling prototype than when the resource is expressed as a table in a
design specification document. Likewise, utilization of a shared hardware resource
can be controlled by means of a binary semaphore (Figure 10). Resource allocation
should evolve along with the design, in an orderly fashion, so that the verification
process is not left until the entire design has been specified.

task PROTECTEDVARIABLE 2 is
entry READ (CURRENT VALUE: out CHARACTER);
entry WRITE (NEWVALUE: in CHARACTER);

end PROTECTED VARIABLE;

task body PROTECTEDVARIABLE is
VARIABLE: CHARACTER;

begin
loop

select
accept READ (CURRENTVALUE: out CHARACTER) do

CURRENTVALUE: = VARIABLE;
end; .

or
accept WRITE (NEW VALUE: in CHARACTER) do

VARIABLE: = NEW VALUE;
end;

end select;

end loop;
end PROTECTED VARIABLE;

FIGURE 15. ADA SHARED RESOURCE EXAMPLE

With the authors' methodology, data links between functions are set up early in
the design development. This communication network can be validated even before the
functions themselves or the messages that are passed back and forth have any sub-
stance. (This is especially true for concurrent processing situations.) Further-
more, test scenarios geared toward individual functional areas can be run at various S
stages in the development of the design. If the code is properly instrumented, flow
of data can be verified. This prevents the unnecessary complication of testing the
data flow of a function only after its design is completely specified.

29

S% " .-



0

NSWC TR 82-417

The authors' approach has fewer opportunities for error. Detailed functional
designs can be integrated into the program on a gradual basis; data flow validation
can be done on a similar gradual basis. As different functional areas are elaborat-

ed in the program, their data flow can be validated with the other functional areas
already developed. (This is completely in keeping with the top-down and step-wise
refinement philosophies.)

A Prototype Computer Program Should Permit Evaluation of Functionality and
Operational Suitability S

What constitutes functionality? The quality of functionality involves the

program's ability to behave in a manner consistent with the program's functional
requirements. The only way to ensure that the program is consistent with its re-
quirements is to execute a series of thorough test scenarios. If the traditional
approach is followed, any scenarios designed to test functionality do not take place •
until the program's design has been completely specified. A paper design remains
untried until it is finished.

In the authors' methodology, evaluation of a program design's functionality is
made at each stage in the refinement process. Initially, high-level control struc-
tures and sequencing logic are tested for compliance with the system requirements.
Later, functional areas are tested individually for consistency at the time when
their individual designs are "fleshed out." As was said earlier, step-wise refine-
ment of the prototype is part and parcel of the authors' methodology. Therefore, as
each function in its turn is developed and matured, its consistency with that par-
ticular function's requirements is checked before the next step in the design is
undertaken. Evaluation of the finished prototype's functionality is an evolutionary

process, with an assessment of functionality being made at the various stages in the - -.

program's development.

What exactly constitutes operational suitability in a computer program design? -
Operational suitability concerns the user's interface with the program. The user,
after all, will interact with the finished program on a regular basis and, unless
the user is satisfied with the prototype and the final system, the designer has
technically failed. In a more definitive sense, the prototype is operationally

suitable if, and only if, it adequately performs its intended functions in a manner
appropriate from the user's standpoint. The intended functions of the prototype - -

should be speifically identified in the program performance specification (i.e.,
during the requirements definition phase), and there should be no ambiguities or

anomalies in this specification. Similarly, the definition of adequate performance
(particularly with regard to the operator interface) should be explicitly stipulated

in the performance specifications. Evaluation of the operational suitability of a
prototype computer program's design involves measuring it against the specified
operational requirements. If the prototype, at a particular stage, meets these

requirements (to the user's satisfaction), then the design may be deemed operation-
ally suitable for that level of development. Operational suitability may also in-
volve adequacy cf system performance in a suitable environment.

When following the authors' methodology, prototype development provides contin-
uous feedback to the user throughout the design process. The user is then able to
monitor the program's maturation process and can interact with the program designer
to deal with problem areas as they arise. A significant by-product of this process

30

• . . . . . . .. . " . .. . .



NSWC TR 82-417

is that the user gradually develops an intimate familiarity with the prototype. A
detailed understanding of how the prototype works can make the user better equipped
to render a more intelligent judgment as to the quality of the design.

SUMMARY

The prototype produced by the authors' methodology provides a design validation
mechanism not readily available with traditional design techniques. While the use
of a high-level language as a PDL produces virtually the exact same design as would S
be generated using a "standard" PDL, the ability to execute the program design
throughout the design process is a distinct advantage. A design that executes from
its earliest inception certainly has greater credibility and is less likely to con-
tain errors than one that is only scrutinized for executability after the program's
design has been specified in its entirety.

APPLICATION OF THE DESIGN PROTOTYPING METHODOLOGY

APPLICATION ENVIRONMENT S

In this section, the authors have undertaken to describe the design prototyping
methodology as it applies to real-time embedded software. The four stages in the
development of a physical design are elaborated.

The authors' examples and the program architecture implicit therein are a func- S
tion of how Ada was used in the context of a trial design effort. These examples in
no way imply that this is the only context in which Ada can be used, or that other
program architectures are not equally valid. The Ada compiler used by the authors
was developed by Telesoft. Inevitably, some compromises and unverified techniques
have resulted due to the currently incomplete status of the implementation.

PHASE ONE OF PHYSICAL DESIGN

The first step in the development of this stage is the identification of system
functions and data flow. Subsequently, the determination of formats for typical
system modules must be made. The conceptual notion of an Ada task closely parallels 0
that of a module. Furthermore, the ability to execute in parallel (or concurrently,
given a single-processor machine) is a functional requirement of the application
area. Since concurrent execution is a significant advantage of the Ada task struc-
ture, the authors assume that all modules are to be implemented as tasks (Figures 8
and 16). This assumption is generally consistent with the intention stated earlier
to develop this methodology within the context of real-time programming.

Given that all modules are implemented as Ada tasks, the question of inter-
module communication has to be dealt with. Originally, synchronous module communi-
cation was the authors' goal. Unfortunately, the authors' preliminary Ada compiler
did not have the conditional entry call feature. Deadlock problems associated with
task rendezvous arose when synchronous communication was attempted without this
critical structure. It was decided that the only viable solution was a modified

31



V I P

NSWC TR 82-417

task body GUN WEAPON SYSTEM INTERFACE is
INTERVAL: constant DURATION: = 0.01;

NEXTTIME: CALENDAR.TIME;
-- CALENDAR here refers to a predefined library package,

-- whose function CLOCK returns the current value of TIME

-- Other local data declarations
S

begin
accept COMMENCE do

THISTASK.ID: = 11;
THISTASK.NAME: = "Gun Weapon System Interface";
-- Other initialization routines

NEXT TIME: =CALENDAR.CLOCK() + INTERVAL;

end;

loop

select

accept RECEIVE MESSAGE (MESSAGE: in MESSAGETYPE) do
ASSIMILATE NEW INFORMATION;
-- Assimilate new information into data base

end;

or

-- accept other entries and perform processing

or
delay NEXTTIME - CALENDAR.CLOCK();

if THISTARGETISTOBEENGAGED( I then
PERFORM PERIODIC UPDATE;
-- Perform periodic update routines

end if;
NEXT TIME:=NEXT TIME + INTERVAL;
- Generate message(s) to be sent to
- the Mailbox for subsequent transmittal

-- to its (their) recipient(s)
MAILBOX.SEND MESSAGE (THIS MESSAGE);

else
null; 5

end select;
exit when END _OF PROGRAM;

end loop;

end GUN WEAPON SYSTEM INTERFACE;

FIGURE 16. TYPICAL TASK DEVELOPMENT

32

. .. . . . ...-. -. .. . . . . ..



NSWC TR 82-417 0

n of the "mailbox" task configuration (mentioned earlier), which essentially
ad an asynchronous communication network (Figure 14). The system architecture
ant from this approach is shown diagramatically in Figure 17. (The reader

note that most embedded computer systems involve interaction with external -

s. This issue can easily be handled by the creation of additional Ada tasks 0

ed as interrupt handlers.) Figure 18 presents the system architecture en-

ated in the form of a package specification. Figure 19 is a visibility
chy diagram, which represents program architecture from the compiler's point

W.

W

GLOBAL DATA

OPERATOR 5
CONSOLE .-

SUPPORT

GLOBAL 5
COORDINATE
GENERATION

SPY 1A
1 RADAR

INTERFACE

0
MESSAGE

QUEUE

GUN WEAPON
S SYSTEM MAILBOX

INTERFACE

FIGURE 17. SYSTEM MODUILE ARCHITECTURE DIAGRAM

33

.. . . . . . . ... . . . .



NSWC TR 82-417

I

with GLOBAL DATA PACKAGE,

MESSAGE QUEUE,
MAILBOXPACKAGE;

package SYSTEMMODULEPACKAGE is

task OPERATORCONSOLESUPPORT is

entry RECEIVEMESSAGE (MESSAGE: in MESSAGE TYPE);
-- MAILBOX.SENDMESSAGE (THISMESSAGE);

end OPERATOR CONSOLE SUPPORT;

task GLOBAL COORDINATE GENERATION is

entry RECEIVEMESSAGE (MESSAGE: in MESSAGETYPE);
-- MAILBOX.SENDMESSAGE (THISMESSAGE);

end GLOBAL'_COORDINATE_GENERATION; g

task SPY 1ARADARINTERFACE is

entry RECEIVEMESSAGE (MESSAGE: in MESSAGETYPE);
-- MAILBOX.SENDMESSAGE (THISMESSAGE);

end SPY_lA_RADAR_INTERFACE;

task GUNWEAPONSYSTEMINTERFACE is

entry RECEIVEMESSAGE (MESSAGE: in MESSAGE TYPE);

MAILBOX.SEND MESSAGE (THIS MESSAGE);
end GUN WEAPON SYSTEM INTERFACE;

end SYSTEM MODULE PACKAGE;

package body SYSTEMMODULEPACKAGE is

end SYSTEM MODULE PACKAGE;

* 4

FIGURE 18. SYSTEM4 MODULE ARCHITECTURE IN CODE FORM

34

,, . ..- . . , . .- ,. .. .. . . .- . •.. .. . . . . . . . . .



NSWC TR 82-417

I" GLOBAL "-
." DATA

OPERATOR TRACK SPY 1A GUN WEAPON
INTERFACE FILE RADAR SYSTEM
PACKAGE PACKAGE QUEUE PACKAGE PACKAGE

MAILBOX

S

SYSTEM MODULE PACKAGE

OPERATOR CONSOLE SUPPORT

GLOBAL COORDINATE GENERATION

SPY 1A RADAR INTERFACE

GUN WEAPON SYSTEM INTERFACE ,

MAIN
PROGRAM

FIGURE 19. VISIBILITY HIERARCHY FROM THE COMPILER'S VIEWPOINT

With the determination of this network, a Master Message List (Figure 20) can 0
be constructed, which consists of a list of stubbed-out messages, each message rep-

resenting a communication link between two tasks. Each message contains a source

and destination, but no content; at this stage of development, only the ability to
pass messages is relevant and all resource utilization (e.g., time-driven control
loops) is simulated (i.e., the algorithms for the construction of messages, the
assignment of conditionals, etc., do not yet exist). Consequently, the development
of these resources, at this level of detail, is not based on the actual functional-

.. ity of the program, but rather on trial design allocations that are to be sub-

- sequently verified. Conditions on entry calls and accept statements can be handled
much as was described in Figure 12. During phase one, module or task interrelation- .

ships are explored and rudimentary subprogram packages are instantiated (Figure 21). -

Interrelationships among the subprograms are dealt with in phase two. _

35

. . . . . . . . . . .. . . . . . . . . . . . * *. . . * . . . . . . . . * . . . .



NSWC TR 82-417 6

type MESSAGE TYPE is

record

ID: INTEGER; S

SOURCENAME: TASKNAME;

DESTINATION NAME: TASK NAME;

-- Content field....

to be decoded at destination

end record;

MASTER MESSAGE__LIST: array (1.1001 of

MESSAGETYPE;

FIGURE 20. STUBBED-OUT MESSAGE STRUCTURE

with GLOBALDATAPACKAGE;

package GUNWEAPONSYSTEMPACKAGE is

use GLOBAL_ DATAPACKAGE;

procedure ASSIMILATE NEW INFORMATION; .

procedure PERFORM PERIODIC UPDATE;

end GUN WEAPON SYSTEM PACKAGE;

package body GUN WEAPON SYSTEM PACKAGE is

procedure ASSIMILATENEW INFORMATION is

begin

Assimilate new information

null;

end ASSIMILATE NEW INFORMATION;

procedure PERFORM PERIODIC UPDATE is

begin

-- Perform periodic update

null;

end PERFORM PERIODIC U'PDATE;

end GUN WEAPON SYSTEM PACKAGE;

FIGURE 21 . TYPICAL SUBPROGRAM PACKAGE AT THE END OF PHASE ONE

36

.- . ., .- •- . . o _ . . . • . . .. . . • .- .S



NSWC TR 82-417

The problem of the construction of a generalized message network could possibly
be addressed in another, more efficient, manner. The Ada task type capability could
be used to create a generalized mailbox with multiple instantiations (one for each
system task). The task type would be declared in a generic package, which would
enable the mailboxes to handle messages of different types. This multiplicity of
mailboxes would still. address the problem of message storage and task communication,
with the added advantage that not all messages would have to take the same form.
Unfortunately, the authors were unable to explore this capability, since their pre- --

liminary Ada compiler did not include task types or generics.

Specification of these three structural aspects of the system (modules, message
network, and rudimentary messages) amounts to the design of the system-level archi-
tecture. Subsequent compilation of the prototype at this stage and its successful
execution with a variety of test scenarios complete the test and validation of this
phase of the development. The stage is now set for the initiation of phase two. 6
PHASE TWO OF PHYSICAL DESIGN

The second phase of development constitutes what most would regard as a PDL-
specified design in the traditional sense. During this phase, the above-mentioned
packages of subprograms are developed in greater detail (Figure 22), even though the
algorithms themselves do not yet appear. The separate compilation capability of Ada
proves to be a distinct advantage in the development of these packages.

Once again, resource allocation is simulated as in phase one. There are, how- -"-

ever, some rudimentary functional aspects. Also, conditions are assigned a value so
as to validate control flow, even though the algorithmic structure for evaluating .
those conditions does not yet exist (Figure 12). As was said earlier, this techni-
que essentially predetermines the program's path of execution, but nevertheless
permits the evaluation of its flow of control at this stage of development.

Again, the prototype at this stage is compiled; test scenarios apropos to the
second level of development are created; and the program is executed, debugged, and
reexecuted until performance is satisfactory. In so doing, the prototype is vali-
dated for the second phase of its development. ..-.

PHASES THREE AND FOUR OF PHYSICAL DESIGN

The reader will recall that the authors referred to the third stage of the
development as amounting to a degraded version of the finished program. With this
idea in mind, the authors singled out certain (critical) modules for extended
development. The subprograms associated with these modules are developed in a two-
step process: an outline of the subprograms' algorithmic behavior is drawn up in
the form of comment entries contained within the subprograi and, subsequently, exe-
cutable statements are substituted for these comments (Figure 9). Use of program
correctness techniques at this point as a bridge between phase two and phases three
and four appears to be appropriate.

37

.................... ..... ............ .......



NSWC TR 82-417

with GLOBAL DATA PACKAGE;
package GUN WEAPON SYSTEM PACKAGE is

use GLOBALDATAPACKAGE; -

procedure ASSIMILATENEWINFORMATION;

procedure PERFORM PERIODIC UPDATE;

end GUNWEAPONSYSTEMPACKAGE;

package body GUN WEAPON SYSTEM PACKAGE is

procedure ASSIMILATENEWINFORMATION is

procedure GWS SIMULATION CONTROL is

begin
null; 0

end GWS SIMULATION CONTROL;

procedure SHIPMOTIONGENERATORINTERFACE is

begin
null; ,;j

end SHIPMOTIONGENERATORINTERFACE; .0

procedure TARGETGENERATORINTERFACE;

begin
null;

end TARGET GENERATOR INTERFACE;

begin

--Assimilate new information into data base
if MESSAGE.SOURCENAME = "Scenario Executive" then

GWSSIMULATIONCONTROL;
elsif MESSAGE.SOURCENAME ="Ownship Data generation" then

SHIP MOTION GENERATOR INTERFACE;
elsif MESSAGE.SOURCE NAME =Ownship Perspective" then

TARGETGENERATORINTERFACE;

end if;

end ASSIMILATENEWINFORMATION;

FIGURE 22. TYPICAL SUBPROGRAM PACKAGE DURING PHASE TWO

38

S __.



* .1 - -. -I I U EU I EU iE ,5, -r -*.. --

NSWC TR 82-417

procedure PERFORM PERIODIC UPDATE is

procedure CALCULATE BALLISTICS DATA is

begin
null; 0

end CALCULATEBALLISTICSDATA;

procedure ISSUEGUNORDERS is

begin
null;

end ISSUEGUNORDERS;

procedure ASSESSGUNEFFECTIVENESS is

begin
null;

end ASSESSGUNEFFECTIVENESS;

begin

-- Perform periodic update

CALCULATEBALLISTICSDATA;

ISSUEGUNORDERS;
ASSESS GUN EFFECTIVENESS; ,

end PERFORM _PERIODICUPDATE; -

end GUN WEAPON SYSTEM PACKAGE;

FIGURE 22. TYPICAL SUBPROGRAM PACKAGE DURING PHASE TWO (Continued)

Part of this subprogram development involves a development of the user inter-
face. Not only does the user's ability to exert an influence on the program in-
crease with this stage of development, but feedback information from the program is
also generated for the user's enlightenment.

Another enhancement is that many of the messages being exchanged by the tasks
are given specific content records during this stage of development.

Compilation, and execution and verification by means of test scenarios once
more validate the prototype's competence at this stage.

Suffice it to say that phase four is merely an application of the principles of
phase three extended to all system modules and their accompanying subprogram pack-
ages for which design validation is considered appropriate. A validated prototype
program, designed in accordance with the functional requirements, is the end result
of the methodology.

39

• . .. . . ° . . . .



.7 17 . . .

NSWC TR 82-417

CONCLUSIONS

STATE OF THE ART 0

PDLs based on Ada are currently being developed in industry by, most notably,

IBM and TRW. TRW's Ada/PDL consists basically of a "relaxed" version of standard ..-.

Ada syntax with additional "design narrative" constructs meant to handle unspecified *. *.

portions of the design.2 3 IBM's PDL/Ada is essentially a proper subset of the stan-

dard Ada syntax.24  Since the PDLs are destined to be PDLs in the strict sense, they .

do not provide executability. However, the IBM version can be analyzed for syntax

errors, etc. by an Ada compiler. The authors are encouraged by these efforts, since
they foster a program design philosophy not unlike the one described herein. How-
ever, it must be pointed out that no matter how closely a PDL is allied with a pro-

gramming language, it can never offer the validation and verification advantages of

an executable design implemented in a true programming language.

SUMMARY

The advantages of using a high-level programming language as a PDL lie in the

ability to construct a prototype program early in the design development phase. It
has been shown that most PDL traits can be captured in a high-level language, pro-
vided that the program designer is willing to discipline his/her coding techniques

to that end. The disadvantages involved include no documentation generation capa-
bility with most high-level languages and the fact that most high-level languages do

not offer the versatility of Ada. The authors believe that no other high-level
programming language to date is better suited to their methodology of design proto- S
typing. Additionally, extensions of this approach upward to encompass automated

document generation and downward to encompass program correctness techniques appear

to be both beneficial and feasible.

Another advantage of the authors' methodology deals with the quality of the

prototype program produced as a result. Because the design is scrutinized every
step of the way in its development, the verification process has already been ac- -.

complished by the time that the full prototype is implemented. This means that the
prototype is substantially error-free. Program correctness techniques potentially
can enhance this characteristic to a great degree. Furthermore, since errors in the

design are caught at a stage in the design when their correction is relatively sim-

ple, the problem of error propagation is greatly diminished. Finally, the transi-
tion from conceptual design to tangible program is much smoother than in a conven-
tional system development.

POSTSCRIPT

In the period since the work in this report was performed, the Institute of

Electrical and Electronics Engineering (IEEE) "Ada as a PDL Working Group" has pro-

ceeded a pace in defining a guideline for use of Ada as a PDL.2 5 Note the important
distinction in the IEEE effort; the guideline specifically calls for PDL compatibil-

ity with the Ada compiler. Any additional design information is to be supplied as 01

special-form comments denoted by "--I" This is, of course, an essential ingredient

of the design prototyping methodology in that the language itself represents

40



NSWC TR 82-417

the mechanism whereby the design is expressed. A pair of quotes from the current
draft guideline serves to illustrate the fundamental philosophical compatibility
between the IEEE guidelines and the software design prototyping methodology.

Concerning mainstream design features, -

The Ada DL* should naturally contain features
typically associated with a design language;

specifically it should be capable of expressing:

* Software design structures at various levels of
design

* Data flow

* Execution or control flow

* Process or algorithm design

* Data definitions

* Data usage and references .

* Interface definition

* System element connectivity/dependencies

Concerning support of traceability/allocation features, .0

The development of software must take into account
numerous system requirements. In addition to satisfy-
ing functional requirements, the software must be
designed to satisfy numerous other complementary

requirements, such as performance or security require-
ments. Many development methodologies utilize a pro-
cedure of progressive allocation of these complement- .

ary requirements as the development proceeds topdown.
Following a design elaboration, each of the func-
tional and complementary requirements are "traced" to -

those design elements. S

It is felt that the allocation procedures and trace-
ability verification generally contribute to quality
software developments. For this reason, an Ada DL

should support these mechanisms whenever the derivi-
tive methodology prescribes them. Below is a candi- .0
date list of such complementary requirements to be

allocated/traced:

*DL is design language

41

. . . . . . . ..9



NSWC TR 82-417

* Performance (Timing and sizing): includes critical

timelines, frequencies, capacities, utilizations and
limits.

* Fault Tolerance: includes error detection, diagno-

sis, and handling, backup/recovery and reliability
redundancy.

* Security: includes multilevel security constraints,

set/use access restrictions, breach detection and
handling.

* Distribution: geographical distribution of pro-

cessing, data storage and access.

* Adaption: to provide flexibility for environment S
operation or user adaption.

* Quality: for example those requirements relating to
usability, integrity, efficiency, correctness, reli-
ability, maintainability, portability, testability,
flexibility. S

The authors heartily concur!

42

. .. . .



NSWC TR 82-417

REFERENCES

1. The NAVMAT Software Engineering Environment Working Group, A Software
Engineering Environment for the Navy, Naval Material Command (Washington, D.C.,
31 March 1982).

2. Headquarters, Department of the Army, A Guide to System Engineering, TM 38-760-
1 (Washington, D.C., 30 November 1973).

3. Frederick P. Brooks, Jr., The Mythical Man Month (Reading, Mass.: Addison-
Wesley, 1978) pp. 115-123.

4. Lawrence J. Peters, Software Design: Methods & Techniques (New York: Yourdon
Press, 1981), p. 16.

5. Robert T. Bevan, Automating the Translation from a Program Design Language
(PDL) to Structured Source Code, NSWC TR 80-382 (Dahlgren, Va., November 1980).

6. Don O'Neill, "TRIDENT Integration Engineering," IBM Software Engineering
Exchange, Vol. 2 (January 1980), pp. 10-11.

7. David Gries, The Science of Programming (New York: Springer-Verlag, 1981), pp.
1-5.

8. United States Department of Defense, Reference Manual for the Ada Programming
Language, Proposed Standard Document (Washington, D.C., July 1980).

9. Henry Ledgard, Ada, an Introduction (New York: Springer-Verlag, 1981).

10. I. C. Pyle, The Ada Programming Language (Englewood Cliffs, N. J.: Prentice-
Hall International, 1981).

11. Stephen A. Sutton and Victor R. Basili, FLEX: A Flexible Automated Process
Design System, NRL Report 8349 (Washington, D.C., 30 November 1979).

12. The IEEE Working Group on Ada as a PDL, Minutes of the First Meeting
(Moorestown, N. J., May 1982).

13. Nathaniel Bowditch, American Practical Navigator, Vol. 2, 1975 edition (Defense
Mapping Agency Hydrographic/Topographic Center, 1975), p. 584.

14. A. N. Haberman and Isaac R. Nassi, Efficient Implementation of Ada Tasks, DARPA
(Washington, D.C., January 1980).

15. W. Gellert et. al., The VNR Concise Encyclopedia of Mathematics (New York: Van
Nostrand Reinhold Company, 1977), pp. 274-275.

16. Renaissance Telesoftware, Inc., The Telesoft ROS Operating System User's
Manual, Version 1.0 (5 August 1981).

17. David E. McConnell, Productivity Initiatives for Effective Lifetime Support in
the Navy's AEGIS Program (DRAFT), NSWC (Dahlgren, Va., 10 June 1982).

43

.,, -- .-" ,.,. -:-.'/'.".' . -.. -.- . . .. . .. . .... . . -



NSWC TR 82-417

REFERENCES (Continued)

18. Elliot J. Chikofsky, Obtaining Design Information from Existing Software 0
(OXRP/SXRP) (DRAFT), University of Michigan ISDOS Project Technical Memorandum
461 (Ann Arbor, Mich., 17 August 1982).

19. Computer Sciences Corporation, User's Manual for the AEGIS Tactical Executive

System (ATES), ACD 1186 (Moorestown, N.J., 8 October 1980).

20. Digital Equipment Corporation, VAX Technical Summary (Maynard, Mass., 1982).

21. Digital Equipment Corporation, VAX/VMS Internals and Data Structures (Maynard,
Mass., April 1981).

22. J. D. Ichbiah, et. al., "Rationale for the Design of the Ada Programming S
Language," ACM SIGPLAN Notices, Vol. 14 (June 1979), p. 11-9.

23. Edward Colbert et. al., A Case for a Simple Ada PDL (DRAFT), TRW Defense
Systems Group (Redondo beach, Calif., March 1982).

24. D. W. Waugh, "Ada as a Design Language," IBM Software Engineering Exchange, 0
Vol. 3 (October 1980), pp. 8-12.

25. The IEEE Working Group on Ada as a PDL, Minutes of the Fourth Meeting (London,
England, May 25, 26, 27, 1983).

40

44"-... -

. '-. < '. - . -'. -. '. -. , ... - , , - " . . . . . .-' . - .. ' .- . . ..-. ..'< . -' . .. . ' ..- ... '' -< - .. .-- - i . ' ' -.. -



NSWC TR 82-417

DISTRIBUTION

Copies Copies

,ibrary of Congress Commander

TTN: Gift and Exchange Division 4 Naval Ocean System Center

ashington, DC 20540 ATTN: R. Eyres, Code 8302 1 S
T. Phillips 1

da Joint Project Office San Diego, CA 92152

allston Tower 2
uite 1210 Commanding Officer
01 North Randolph Street Naval Air Development Center

TTN: LCDR John Krdmer 1 ATTN: H. Stuebing 1
,rlinqton, VA 22203 Warminster, PA 18974

,eadqua rters Commander
aval Material Command Naval Air Systems Command
a Department Department of the Navy

TTN: Owen McOmber, MAT 08Y 1 ATTN: J. Blackmon, PMA 533 1 S
!arihington, DC 20360 B. Zempolich, AIR 360B 1

Washington, DC 20361

'omma nder

[a val Sea Systems Command Commanding Officer
TTN: Robert Converse, PMS-408 1 Naval Underwater Systems Center

CDR S. Kopinitz, PMS-400 B33 1 ATTN: T. Conrad, Code 3511 1 U
LCDR Lanoston, SEA 61Y25 I Newport, RI 02840

LCDR K. L*-ige, PMS-408 1
CDR R. Goodman, PMS-408 I Commander
P. Anirews, SEA 61R 1 Naval Electronics Systems Command
R. Vaii,inh, .SEA 003 1 ATTN: LCDR J. Barnes, ELEX-814 1

CAPT Meiniq, PMS-400B 1 D. Jordan, PME-120-3 1 S
CAPT Lockhart, PMS-40OB3 1 J. Machadc, ELEX 6134 1
CAPT Doneqan, PMS-400B5 1 M. Potter, ELEX-814 1

CAPT Holloway, SEA 61 1 Washinqton, DC 20360
CAPT Hatch, SEA 62 1
C. Costanzo, SEA 63B I Commandinq Officer

rashington, DC 20362 Fleet Comhat Direction System S

Support Activity
'hief of Naval Operations Dam Neck

,TTN: CDR R. Simpson, OP-942 1 ATTN: S. Peele, Code 82 1
CDR A. Hadley, OP-942 1 C Russ 1

rashington, DC 20350 Virqinia Beach, VA 23461

- A
. . . .. . ... . . ... . ... °. . k ::-!



NSWC TR 82-417

DISTRIBUTION (Continued)

Copies

mmanding Officer
eet Combat Direction System
upport Activity
o Catalina Boulevard

'TN: D. Balmer 1
.n Diego, CA 92152

ternal Distribution:

A (T. McKnight) 1
11 (GIDEP) 1
0i (D. Sullivan) 1
131 9

o 1
6 (D. Becker) 1

!o1
?8 (N. Porter) I
t0 1

0 1
02 (R. Bean) 1
o 1

3 (H. Huber) 1

o 1
!o 10
!OE (D. Green) 1
1 100

~4 (E. Dudash, D. McConnell) 2

02 (R. Cullen) 1
I1 (M. Stein)1

I (R. Harrison)1
2 (E. Price) 1

101

'2 (H. Cook)1

(2)



FILMED

7-85

DTIC

•. .


